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SUMMARY

A second-order finite difference and two spectral methods including a Cheby-
shev tau and a Chebyshev collocation method have been implemented to determine
the linear hydrodynamic stability of an unbounded shear flow. The velocity profile
of the basic flow in the stability analysis mimicks that of a one-stream free mixing
layer. Local and global eigenvalue solution methods are used to determine individ-
ual eigenvalues and the eigenvalue spectrum, respectively. The calculated eigen-
value spectrum includes a discrete mode, a continuous spectrum associated with
the equation singularity and a continuous spectrum associated with the domain
unboundedness. The efficiency and the accuracy of these discretization methods in
the prediction of the eigensolutions of the discrete mode have been evaluated by
comparison with a conventional shooting procedure. Their capabilities in mapping
out the continuous eigenvalue spectra are also discussed.



1. INTRODUCTION

This paper studies the numerical solutions of a boundary value problem using
four different solution methods. Tile Rayleigh equation 1 governs the inviscid in-
stability properties of linearized disturbances. With the conventional normal mode

representations for disturbances, the equation for the complex amplitude, _, of the
velocity perturbation in the y-direction is

d 2 d2U

- oJ dy _ a 2) - a-d-fi-y219 = 0 (1){( au ) (

In a spatial analysis, it is assumed that the disturbances with real frequency, w,
traveling at the speed, w/a,-, are amplified at the rate exp(-aix) upon the basic
parallel flow described by the mean velocity in the x-direction, U(y). a denotes the
complex wavenumber and o., the frequency. The Rayleigh equation, together with
the boundary conditions

-, 0, y -_ +_ (2)

defines the basic linear inviscid instability problem, in the form of a boundary value

problem for parallel free shear flows in an unbounded domain. Thus we are solving
an eigenvalue problem to determine the dispersion relationship

a = a(0J) (3)

Traditionally, the hydrodynamic stability problem has been solved by shooting
techniques 2. This involves the solution of two initial value problems with the two,
boundary conditions as their, respective initial conditions. Eigenvalues are deter-
mined by satisfying a matching condition at a certain intermediate point or bound-
ary in the flow. A good knowledge of the characteristics of the solutions is:often

needed in the shooting technique in order to make a good initial guess for the eigen-
values. Also, the accuracy of the solutions is often limited by the accuracy o£ the
numerical integration scheme.

Recently, interest in the application of spectral approximation methods has
grown in all branches of science and engineering. Spectral methods are useful
in problems where high resolution is required 3'4. These methcds have also beefi

studied in classical problems of computational fluid dynamics 5,6 and in turbulence
simulations 7. Canuto et al. s have given a detailed description of the technical as-

pects of the applications of various spectral methods in fluid dynamics.
Another application of spectral methods has been in the solution of hydrody-

namic stability problems. For example, Orszag 9 compared spectral methods based
on different expansion polynomials and used a Chebyshev polynomial expansion to
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study the temporal instability of plane Poiseuille flow. When this discretization is

applied to the lineazized equations of hydrodynamic stability with the appropriate
boundary conditions, an algebraic eigenvalue problem is obtained. For temporal
instability, in which a fixed wavelength disturbance grows or decays in time, the
complex frequency is the eigenvalue. This parameter appears linearly in the prob-
lem and standard algebraic eigenvalue techniques may be used to determine tile
eigenvalues. However, most shear driven instabilities are spatially unstable. In this
case a disturbance of fixed real frequency grows or decays in space, and the com-

plex wavenumber of the disturbance is the eigenvalue. The wavenumber appears
nonlinearly in the problem and standard algebraic eigenvalue techniques are not ap-
plicable. Bridges and Morris 1° showed that the Linear Companion Matrix Method

(LCM) and a method based on matrix factorization (MF) could be applied success-
fully to this problem. The LCM approximates the entire eigenvalue spectrum. The
factorization method gives only a subset of the eigenvalue spectrum. However, the

size of the companion matrix in the LCM is p times that of the original matrices
where p is the order to which the eigenvalue appears. Note that neither of the two
methods requires initial guesses for eigenvalue calculations.

So far the applications of the spectral approximations in conjunction with the
global eigenvalue solution methods have been limited to the boundary layer or
bounded shear flow instability problem 1°,11. In the present analysis, two spectral
methods, the Chebyshev tau method and a Chebyshev collocation method are used

to determine the spatial, inviscid stability of a free shear layer. The resulting
eigenvalue problem in which the parameter appears nonlinearly is solved using the
LCM and MF.

Moreover, the advent of these computational methods, LCM and MF, has
made it feasible to solve the spatial stability problem using other discretization
techniques, such as finite difference formulation. The application of the finite dif-
ference techniques also results in an eigenvalue problem in which the parameter
appears nonlinearly. Therefore, standard algebraic eigenvalue techniques are not
applicable in this case as well and the global eigenvalue solution methods have to
be used as in the case of spectral approximations. For both spectral and finite dif-
ference discretizations, the accuracy of the solutions depends mainly on the order
of approximations. In the present analysis, the order of approximation is measured
by either the number of Chebyshev polynomials used in the spectral methods or the
number of grid points at which differential equations are discretized in the finite dif-
ference formulation. Finite difference discretizations, however, are much simpler to

implement than spectral methods. Therefore, the finite difference approximations
provide a viable alternative for hydrodynamic stability analyses using the global
eigenvalue solution methods.

In the present paper two spectral approximations are used to determine the
spatial, inviscid stability.of a two-dimensional free shear layer. A simple finite



difference scheme is also considered. The solutions are compared with tllatus-
ing the shooting procedure. This stability analysis is of interest as experimental
observations x2,13have shown that the local characteristics of large-scale coherent.
turbulent structures in free mixing layers are described remarkably well as inviscid
instability waves. If these observations are to form the basis of a turbulence model

it is valuable to have efficient numerical schemes to solve the inviscid hydrodynamic
stability problem. Liou 14 has successfully implemented these global approximation
schemes in developing turbulence models based on a linear theory to simulate the
evolution of a turbulent free mixing layer.

In the following sections, the basic boundary value problem, the numerical
discretizations and the eigenvalue solutions are first described. Comparisons of the
accuracy and efficiency of the schemes are then given. The various features of

the eigenvalue spectrum of the Rayleigh equation unveiled by the global numerical
approximations are also discussed.

: 2. FORMULATION

A transformation

z = f(y) (4)'

which maps the unbounded physical domain onto the finite Chebyshev domain [-1,1]

must be used to apply the Chebyshev spectral methods. The transformed Rayleigh
equation becomes

[u_]_3 _ [_]_2 _ [u( _'m )' m - (u'm)'m_]_+ _( _'m)' m = 0 (5)

where m denotes the metric .of the transformation and ( )' denotes d/dz. The
boundary conditions become

--, 0, z --, ±1 (6)

For the Rayleigh equation, it is shown below that the system of equations generated
by each of the three approximation methods forms an eigenvalue problem with the
eigenvalue, a, appearing nonlinearly. That is,

D3(a)v = 0 (7)

where

D3(a) = Co_ 3 + eta 2 + C2a + C3.

The Co, (21, C2 and C3 are the coefficient matrices of the lambda matrix D3(a).
The components of the eigenvector v are either the expansion coefficients of the
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Chebyshev series approximation or the solution vectors themselves. The eigenvalues
ofthesystemaretherootsofthecharacteristicequation

detlD3(a)l = 0 (8)

2.1 Chebyshev Tau Method

In the Chebyshev tan (CT) method the solution _ is approximated by a trun-
cated finite series expansion of Chebyshev polynomials,

N

_(z)__v(z) v0 Z= 5- + ,_,,Tn(z) (9)
n=l

where Tn(z) is the n th order Chebyshev polynomial of the first kind. The vari-
ous properties of Chebyshev polynomials can be found in Fox and Parker 15. For
convenience the Rayleigh equation is now written in integral form:

._o2 + #02 + ¢0,+ b + blz + bs = 0 (10)

where

(_ = -m2UO "+ _ (mS)'U0dz+ 2 m2U'Odz-

m s

D = w {mS# 2

and bl, b2 are integration constants. The series representation of v(z) is substi-
tuted into equation (10) and the integrations are performed by making use of the
Chebyshev rclations

Tl(z) _ = o/ 1T_(_)az - _[To(z)+ Ts(z)] n= 1 (n)
T.+t(_) T.__(z)
2(,-,+1) 2--(-(-(-(-(-(-(-(_-1)n >_2
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After the application of the above expressions to the integrated Rayleigh equation,
equation (10), we obtain (N - 1) equations by equating the eoe_cients of the
polynomials of degree n, n = 2, ..N. The resulting system of equations can
be expressed in the form of equation (7). The details of the application of the

Chebyshev tau method to hydrodynamic stability problems can be found in Bridges
and Morris 1° and Liou 16.

2.2 Chebyshev Collocation Method

It is well known that a smooth function, F(z), can be approximated by poly-
nomials in z. The resulting polynomials, such as the Lagrange interpolation poly-
nomial based on equally spaced collocation points, however, typically diverge as the
number of collocation points increases. The poor convergence behavior of polyno-

mial interpolation can be avoided by relating the collocation points to the structure
of orthogonal polynomials, like Chebyshev or Legendre polynomials. In the Cheby-
shev collocation (CC) method the collocation points, zj are the extrema of the Nth
order Chebyshev polynomials TN(z). That is,

j=
zj = cos(_-), j = 0,...,N (12)

There axe other choices of the collocation points 17. The approximated solution
becomes

N

v(z)= v(z ) i(z) (13)
j=O

where b)(z) are the expansion orthogonal functions. The approximation simultane-
ously interpolates the solution at each collocation point. That is,

hi(z,) = 5ii (14)

The details of these expressions can be found in Voigt17. The resulting system
of equations obtained by evaluating the differential equation, equation (5), at the
collocation points can be put into the form of equation (7).

2.3 Finite Difference Method

The Rayleigh equation can also be discretized by finite difference (FD) methods
The discretization is performed in the transformed plane where z € [-1,1]. The finite
difference approximation to the Rayleigh equation at grid point i is

[-Ui 5i]a 3 + [w_ila 2 + [fl( 2_xz :) + f2( Az 2 ) + f3fiila



r.c t"_i+1 --Vi--1 Vi+I--2vi + _3i-1
q-LJ4_, ---- ) + fs( )] = 0 (15)2Az Az 2

where

/, = (u m k = /3 = m')i,

f4 = (-wm2)i, f5 = (-m (mU')')i. (i = 1...N)
2

Az --
N-1

and N denotes the total number of the grid points. The first and the second deriva-
tives are approximated by corresponding second order finite differenceformulas.
It is important to note that there are no additional computational difficulties if
higher order difference formulas are used. The finite differencediscretization has
been found to be more straight forward to formulate than either the Chebyshev
tau or the Chebyshev collocationmethods described above. The application of the
equation (15) at each grid point gives rise to a system of equations in the form of
equation (7).

In the Chebyshev tan method, the eigenvectorsof the eigenvalueproblem give
the spectrum of the expansion. While in the collocation and the finite difference
method, the eigenvectorsare the solution vectors themselves.

2.4 Boundary Conditions

The boundary conditions for the present problem are

= o (16)

since the spatial instability waves must decay far from the shear layer. In the
Chebyshev tau method, the boundary conditions become

N
Vo

v(+l) = -_- + E (+l)nv'_ = 0 (17)
n----1

The addition of these two equations to the set of equations formed in the approx-
imations above closes the resulting system of equations. The eoet_eient matrices,
when written in the form of equation (7), are of order (N + 1) x (N + 1). The
homogeneity of the boundary conditions, however,allowsus to reduce the order of
the lamda matrix by column operations to (N - 1) x (N - 1). The form of the
boundary conditions are the same for both the collocationand the finite difference
methods. They are given by

v( l) = o (18)
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The appropriate column operations and substitutions can once again reduce the

order of the coefficient matrices to (N - 1) x (N - 1).

2.5 Eigenvalue and Eigenfunction Calculations

Two methods are used to solve the eigenvalue problem, equation (7), in which
the parameter is of order three. The LCM linearizes the problem and reduces
it to a general eigenvalue problem. But the resulting companion matrix for the
matrix polynomial is of higher order, 3 x (N - 1), in the present case. The method,
nevertheless, provides an approximation to the complete eigenvalue spectrum. The
matrix factorization method features only a subset of the eigenvalue spectrum. The

method, however, involves only matrices of order (N - 1). The details of these two
methods can be found in Bridges and Morris 1°.

In general, the continuous part of the eigenvalue spectrum may be ignored
when seeking only criterion for stability is. In order to numerically distinguish the
discrete part from the continuous part of the spectrum, a transformation is used in
conjunction with the matrix factorization method. The transformation is

1
-- (19)

The lambda matrix then becomes

D3(a)= d0a3 + + + (20)

This transformation would insure that the eigenvalues of D3(a) in the vincinity of
a I appear in the set of eigenvalues of the dominant solvent of ]_3(a). A solvent
of !)3(&) is said to be dominant if every eigenvalue in the set has an absolute

value greater than all the eigenvalues of D3(&) that are not in it. An algorithm
developed by Dennis et al.19 has been used to find the dominant solvent of the

matrix polynomial. The desired eigenvalue can then be identified. The eigenvalues
obtained from each of the previous methods may be further refined by the iterative
method of Lancaster 2°. To compute single eigenvectors the inverse iteration method
is used,

D(ak) vk+l = _vk (21)

where _ is a scaling factor and is taken as 1 in the calculation. The initial guess for
the iteration is the complex unit vector.

In this section, we have summarized three global approaches to solve the eigen-'
value problem generated by the spatial stability analysis of a free shear layer, in
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which the eigenvalue appears in a nonlinear manner. The eigenvalues will be cal-
culated using both the LCM and the matrix factorization methods. The results of
our computations are presented in the next section.

3. RESULTS AND DISCUSSION

In this section, a comprehensive comparison of the different numerical methods

is presented in terms of their accuracy and efficiency in solving the spatial, inviscid
instability of a free mixing layer.

The velocity profile for the basic free shear layer is chosen to be

1

u(y) = 1 + tanh(y)i (22)

The physical domain is transformed to the domain [-1,1] on which Chebyshev poly-
nomials are defined. Grosch and Orszag 21 studied spectral solutions of differential

equations in both semi-infinite and infinite domains and used three types of trans-
formations. These included a domain truncation, an algebraic mapping and an
exponential mapping. They found that all of the three transformations are useful if

the exact solution of the original differential equation decays exponentially fast as
I Y I _ co, but fail if solutions oscillate out to infinity. Their results also showed

that when the solution of a problem is smooth in the mapped domain algebraic map-
pings are preferred over the other two. Since the solution of the Rayleigh equation
in the regions of constant mean flow properties can be written as,

_exp[_ay] as y ---,q-oo (23)

a square-root transformation is used in the present analysis to avoid the singulari-
ties at the end points of the transformed domain, z = q-l, which would arise if an

exponential mapping was used 21. As will be seen later, the square-root transforma-
tion also enables the CCand the FD methods to predict accurately the continuous

spectrum associated with the unboundedness even though the corresponding eigen-
solutions are highly oscillatory at infinity. The transformation used is,

Y

z = ),/2 (24)( r2 + y:

where r is a scaling factor. The metric dz/dy is

(l -- Z2) 3/2m = (25)T'



The scaling factor r controls the distribution of grid points. Increasing r decreases
the number of grid points clustered around y - 0. Since the scaling factor determines
the amount of the domain stretching, its optimum value, for which the solutions
are most accurate, may depends on both the number of grid points used and the
discretization scheme. However, the best grid distribution should be the same for
a given problem, irrespective of the discretization scheme. Boyd 22 used a steepest

descent method to predict the optimum choice of the mapping parameter in applying
a Chebyshev polynomial approximation to a known, explicit function. Nevertheless,

computing analytically the optimum mapping parameter in the application of global
approximations to a differential equation is difficult. Some preliminary numerical
tests were performed using the matrix factorization method to evaluate the effects

of domain stretchings on the prediction of the discrete eigenvalue spectrum . For
w = 0.2 and N = 17, the results are given in Table 1. The error, e, in each case is
based upon the corresponding solutions from a shooting method and is determined
by

---- Is - aSl (26)

where as is the eigenvalue calculated by the shooting method. This yields the value

as ---- 0.38260-i0.22762. (27)

In the shooting method the Rayleigh equation was integrated in the interval y E
[-6, 6] in 200 steps using a fourth-order, fixed step size Runge-Kutta procedure.
Note that the solution decays exponentially at the far field and the center region
around y = 0 is the region where there are large changes of the solution. To start
a calculation, therefore, one can set r = 1. Since

m(z= o) = 1.0 (28)

the region around z -- 0, where there are large changes of flow properties, is not
scaled for r -- 1. Table 1 shows that the best scaling factors for the FD, the CC

and the CT methods are 2.5, 2.0 and 2.5, respectively. Since the finite differencing
is performed on equally spaced grids and the collocation points in the collocation

method cluster at both ends of the computational domain, more domain stretching,
or a bigger r, is needed for the finite differencing than for the collocation method.

With N = 17, however, the dependence on the stretching parameters seems rather
weak. The eigenvalues predicted by all the discretization methods axe within 1% of

the value obtained by using the shooting method. As will be shown later, this weak
dependence quickly disappears as N increases. In the following calculations, the
scaling factors used are the "optimum values'for each case unless otherwise noted.

Tables 2 and 3 give the order of the coefficient matrices required by each method
to obtain_10% and 1% of accuracy in the eigenvalue calculations, respectively.
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Table 1 Predicted Eigenvalues. w - 0.2, N = 17.

r FD _ CC e CT €

0.5 (0.38053,-0.14657) 0.18 (0.41107,-0.24395) 0.073 (0.36949,-0.18014) 0.11

1.0 (0.35426,-0.22327) 0.064 (0.38119,-0.22371) 0.009 (0.37514,-0.23469) 0.023
1.5 (0.37896,-0.23947) 0.028 (0.38171,-0.22870) 0.003 (0.38455,-0.22343) 0.006

2.0 (0.38575,-0.22985) 0.009 (0.38290,-0.22834) 0.002 (0.38304,-0.22756) 0.001

2.5 (0.38423,-0.22496) 0.007 (0.38313,-0.22931) 0.004 (0.38265,-0.22819) 0.001

3.0 (0.38231,-0.22319) 0.01 (0.38559,-0.23188) 0.012 (0.38319,-0.22877) 0.003

4.0 (0.38114,-0.22187) 0.013 (0.37169,-0.20992) 0.047 (0.38615,-0.23072) 0.011

5.0 (0.38299,-0.22050) 0.016 (0.34586,-0.23982) 0.087 (0.38964,-0.23328) 0.034



It can be seen that the FD discretization predict the discete eigenvalue to the same
order of accuracy as the CT and the CC methods do with the lowest order of the

coefficient matrices. The two spectral methods performed almost equally well with
proper choices of the mapping parameters. All the three discretization methods
show rapid convergence at the low values of N.

Table 2 Predicted Eigenvalues of less than 10% error, w = 0.2.

N r o_r -(_i € x 10 2
FD 5 2.0 0.38334 0.19239 7.9
CC 8 1.5 0.38870 0.21940 2.2
CT 7 2.5 0.41960 0.20607 9.6

Table 3 Predicted Eigenvalues of less than 1% error, w = 0.2.

N r e_r -ai € × 102

FD 9 2.5 0.38364 0.22812 0.3
CC 11 1.5 0.38264 0.22364 0.9
CT 10 3.0 0.38498 0.22597 0.6

For the CC and the CT methods, the calculated eigenvalues converge from 10% to
1% error by increasing the number of the approximation functions by about 30%.
The reason is that in the mapped domain equation (23) becomes

[ oz]_? _exp :F(l_z2) 1/2 as z _+1 (29)

The solution is thus smooth in the mapped domain and the rapid convergence
property of the global methods is retained. Comparisons of the rates of convergence
for the various discretizations and solution techniques are given for the case w = 0.2
in Table 4. All of the discretization methods show rapid (faster than algebraic)
rates of convergence when the LCM is applied. Similarly, the MF method also gives
the same rapid rate of convergence using the CT and the CC methods. As was
expected, the finite difference discretization predicts the eigenvalues well but with
lower rates of convergence.

Note that the maximum computer time required in all the calculations in Table
4 is less than a minute on a VAX 8550 machine. In practical applications, therefore,
the effect of the mapping parameter can be effectively minimized by increasing the
order of approximations, or N, without a significant increase in computer time.
This is ,also evident in the following eigenfunction calculations. Figures I and 2

12



.... Table 4., Errors (_ × 102) of the predicted eigen_MuesJ "

r N

10 20 _ 28

MF LCM MF LCM MF " LCM '_

F D 2.5 1.28 1.29 0.58 0.06 0.32 0.04

C C 2.0 3.01 1.29 0.08 0.08 0.02 0.02

C T 2.0 3.03 0.03 0.12 0;12 0.03 0.03
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Figure1. Eigenfunctionfort,,= 0.2, N = 13using , ShootingMethod;
-- , GT; a , GG; x , FD. (a) RealPart, (b) ImaginaryPart.
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(b)
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Figure 1. (continued)
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Figure 2. Eigenfunction for to = 0.2, N = 23 using . Shooting Method;
, CT; r, , CC; x , FD. (a) Real Part, (b) Imaginary Part

16



(b)

8 ' J. I |

_3i 0.0 [] _ " []

-0.4

-0 8 ' ' ' ' , i ,

-10.0 -5.O 0.0 5.0 10.0

!/

Figure 2. (continued)
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show the real ,and the imaginary parts of the calculated eigenfunctions for cases with
w = 0.2 and N=13 and 23, respectively. The error, €, of the corresponding calcu-
lated eigenvalues was less than 1%. The agreement between the results is excellent
even in the cases with N=13. For tile discrete mode, all the methods become less

sensitive to the choice of the scaling factors as N increases. While the spectral meth-
ods performed better than the finite difference method in other calculations 6,2:_,the
finite difference formulation is competitive in the present application. Thus, tile
choice of solution methods appears to be problem-dependent.

As can be seen from Table 5, the eigenvalues calculated by using tile LCM
argee to the fourth digits witti thOse from •the MF method for'all tile discretization
methods.

Table 5 Predicted Eigenvalues. w = 0.2, N = 17.

LCM MF r E x 10_

FD (0.38421,-0.22494) (0.38423,-0.22496) 2.5 0.7
CC (0.38289,-0.22834) (0.38290,-0.22834) 2.0 0.2 °_
CT (0.38304<0.22755) :(0.38304,-0,22756) 2.0 .0.1

Tile o_f in the matrix factorization method are chosen such that

_f = c_. (30)
and the eigenvalues thus obtained are not refined by iterative methods. The c_,
however, are not always known a priori for other flow conditions. For example, the
realistic velocity profiles of mixing layers may be different from the one assumed
here and, therefore, their eigenvalues may be different. It may thus be difficult to

obtain converged eigensolutio.ns using the shooting methodl Ttae eige'nvalues"and
the corresponding € for other choices of a I are shown in Table 6. Both the FD
and the CT methodsgive good results for up to 30% under-shoot of aT, for which

the shooting method would have failed had the a I been used as an initial guess.
Therefore, in conjunction with the FD and the CT methods, the MF method is far

less sensitive to the choice of af than the shooting method is to its initial guess.
On the other hand, the Chebyshev collocation discretization is more sensitive to

the af.
Figure 3 shows the growth rates of the spatially unstable modes of the free

shear layer obtained by the various methods for N = 11. It was found that since
the eigenfunctions decay more slowly in the far field as the frequency decreases, the
mapping parameters selected for the mid frequency waves were not appropriate for

the high and the low frequency wave calculations. The stretching parameters used
were thus greater in the low frequency cases and smaller for the high frequencies.
As was discussed earlier, the dependence quickly diminishes as N increases.

18



Table 6. Eigenvalues and errors (_ x 102) predicted using the matrix
factorization method.

Ia _x 10_

n'I = .(-0.3,0.2), .[a! -- as Ix 10_ = 20.0

F D (0.376827,-0.224554) 1.4

C C (0.283691,-0.203911) 22.0

C T (0.377169,-0.220236) 2.1

o_f . (-0.228,0.132), 1,',! - o_,ix 102 . 30.0
(Xs

F D (0.373056,-0.214566) 3.6

C C (0.232942,-0.263733) 34.5

C T (0.374547,-0.204189) 5.5
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F;_gure3. Spatial Growth Rates (-c_i). , Shooting Method; zx , GT;
r_ ,GO; x FD.
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One of the advantages of using the global approaches is that we obtain an
approximation to the complete eigenvalue spectrum, while in the shooting method
each eigenvalue has to be determined separately. In addition to a finite number

of discrete values of a that satisfies the dispersion relation (3), there are also con-
tinuous branches associated with the singularity of the Rayleigh equation. In the
present stability calculations, for example, there are two continuous branches of
the eigenvalue spectrum arising from the singularity, Vc, of the Rayleigh equation,
where

a U(yc) - w -- 0. (31)

For the hyperbolic-tangent velocity profile assumed here, these singular spectra are

(i) ai = o ; > (32)

(ii) ai E R ; a_ _ oz. (33)

Figure 4a shows the calculated results with N=17 and w=0.2 using the FD and
the LCM methods. The spectrum associated with the equations (32) can be clearly
seen; however, the one associated with the equation (33) is cut out due to the
magnitude of eigenvalues.

Another continuous spectrum that can be observed in Figure 4 is associated
with the bounded solutions of the asymptotic form of the Rayleigh equation in the
far field,

6" - a 2 _ = O. (34)

since U" _ 0 as y _ 4-oo. This is the continuous spectrum associated with the
domain unboundedness and can be written as

a_ = 0, ai E R (35)

The corresponding eigenfunctions are purely perodic. As is shown in Figure 4b the
numerical results predict better both of the continuous spectra, equation (32) and
(35), with larger values of N. The finite approximations used here will converge to
the solution of the equation as N --+ co. Similar characteristics of the eigenvalue
spectrum have been observed in plane Couette flow calculations 16. The discrete
part of the spectrum is associated with the convective instability. For w=0.2, the
plane Couette flow is stable and the discrete spectrum is empty. Case 24 obtained
eigenfunctions corresponding to the eigenvalues in these singular branches by taking
a Fourier transform with respect to x and a Laplace transform with respect to time
of the linearized disturbance equations. The resulting equation is then solvable
using a Green's function method. The method is applicable to the current cases,
but will not be given here.
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Figure 4 also shows that the presence of these continuous eigenvalue spectra
may conceal or mask the discrete eigenvalues. The spurious solutions, however,

are far away from the discrete spectrum in the complex wave speed plane. Figure
5 shows this tendency dearly. The complex wave-speed of the discrete mode for
_v=0.2 is (0.51845,-0.87404). Thus, the discrete spectrum can be better observed in
the wave-speed plane.

If a transformation that produces singularities at the boundaries of the trans-
formed domain is used, the convergence property of the global approximations would
no longer be retained. Figure 6 shows the approximated eigenvalue spectrum us-
ing a hyperbolic-tangent transformation the CT method and the LCM method for
w = 0.2 and ]V = 27. The transformation is

z = tanh (y). (36)

Both the discrete and the continuous spectra are not well predicted even with the
relative high order of approximation.

Figures 7a, 7b and 7c show tile eigenvalue spectrum with w = 0.2 using tile

CC, the FD and the CT methods, respectively , and the square-root transformation.
The spectra associated with the equation singularity, equations (32) and (33) and
the discrete spectra are well predicted. As was discussed earlier, the convective
instability described by the discrete spectrum is associated with the local vortic-
ity distribution and is less sensitive to r as N increases. It can be observed from
the present results that the same is true for the continuum due to the equation

singularity. Despite the oscillatory nature of the corresponding eigenfunctions as
y --+ cxD,the locations of the continuous spectra associated with the domain un-

boundedness predicted by the CC and the FD also agree well with the analytic
expression, equation (35). The square-root transformation used here seems to be a
viable alternative to the three transformations tested by Grosch and Orszag 21 for
either the FD or the CC methods. However, the continuum predicted by the CT

method is very sensitive to the mapping parameter, r, even for the relatively high
values of N. This may be due to the aliasing terms that are not included in the
Chebyshev spectral tau methods. The eigenvalue spectrum is made complete with
the inclusion of the continuous branches and an arbitrary initial disturbance can
not be represented without knowing the complete eigenvalue spectrum. Therefore,
a good approximation of the eigenvalue spectrum associated with the domain un-
boundedness is important to the solution of the Rayleigh equation in an unbounded
domain.
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4. CONCLUSIONS

Three discretization schemes, two spectral methods and a finite difference
method have been applied to solve the spatial inviscid instability of a free mix-

ing layer with a hyperbolic-tangent velocity profile. Calculated eigenfunctions for
the discrete mode using these global approximations show good agreement with
that using a conventional shooting procedure. For the same order of accuracy of
the calculated eigenvMues, when compared to that using the shooting method, the
finite difference discretization is more efficient than both the Chebyshev tau and the
Chebyshev collocation methods. On the other hand, the Chebyshev tau method is
more efficient than the Chebyshev collocation method. The finite difference method
is also easier to formulate and code. All of the three discretization schemes result in

rapid rates of convergence when the LCM is used. The matrix factorization is less

sensitive to the a I than the shooting method is to its initial guess. The a I appears
in the transformation that was used to identify the discrete eigenvalue. The LCM
is preferred when the eigenvalue desired is not known a priori. The discrete part of

the eigenvalue spectrum is very distinguishable in.the Complex wave speed plane. •
All of the discretization methods used here, the second-order finite difference,

the Chebyshev tau and the Chebyshev collocation methods, are capable of pre-
dicting accurately the discrete spectrum and the continuous spectrum associated
with the singularity of the Rayleigh equation. The continuous spectrum associated
with the unbounded domain can also be well predicted by the three methods, even

though the Chebyshev tau predictions are somewhat more sensitive to the mapping
parameter in the square-root transformation. The global eigensolution methods
studied here may be applied very efficiently to obtain either an approximation to
the complete eigenvalue spectrum_or initial guesses for a lodal shooting procedure
for the discrete part of the spectrum.
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